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ABSTRACT

A formulation to include the effects of wall-proximity in a
second moment closure model is presented that utilizes a tensor
representation for the redistribution term in the Reynolds stress
equations. The wall-proximity effects are modeled through an el-
liptic relaxation process of the tensor expansion coefficients that
properly accounts for both correlation length and time scales as
the wall is approached. DNS data and Reynolds stress solutions
using a full differential approach at channel Reynolds number of
590 are compared to tile new model.

INTRODUCTION

The theoretical development of higher-order closure
models, such as Reynolds stress models, have primarily

been formulated based on high Reynolds number assump-

tions. Accounting for the influence of solid boundaries on
these closure models has usually evolved from either a wall

function approach or a modification to the high Reynolds

number form of the pressure-related correlations and tensor

dissipation rate, and predicated on the near-wall asymp-

totic behavior of the various velocity second moments (e.g.

HanjalK 1994).
A more broad based attempt to account for the prox-

imity of a solid boundary is the elliptic relaxation approach

introduced about a decade ago (Durbin, 1991), and fur-
ther developed for second-moment closures (Durbin, 1993;

Wizman, Laurence, Kanniche, Durbin & Demuren, 1996;

Manceau and HanjalK, 2000, Manceau, Carlson & Gatski,

submitted for publication). In its two-equation form, the

1Address all correspondence to this author.

v 2 -- f model has been applied to a variety of flows (e.g.

Dnrbin, 1995; Pettersson Reif, Durbin & Ooi, 1999). The

new approach outlined here introduces a tensor function

representing the combined effects of a near-wall velocity-

pressure gradient, correlation and anisotropic dissipation

rate that asymptotes to a high Reynolds number form away

from solid boundaries through an elliptic relaxation equa-

tion for polynomial expansion coefficients.

With the development of a generalized methodology

for constructing tensor representations for the implicit al-

gebraic turbulent anisotropy equations (Gatski & Jongen,

2000), it is possible to similarly construct tensor repre-
sentations of only the redistributive part of the Reynolds

stress equations (i.e. pressure-strain rate correlation and

anisotropic dissipation rate equations). The elliptic relax-
ation fornmlation outlined here can be viewed as an inter-

mediate step between a filly explicit algebraic Reynolds

stress model and a full differential Reynolds stress model.

The intermediate step being the relaxation of the expansion

coefficients of the tensor representation rather than that of
tile redistribution function itself.

Comparisons are made with direct numerical sinmla-

tion channel flow at a Reynolds number based on friction
velocity of 590. The comparisons include the mean flow,

turbulent kinetic energy and the Reynolds stresses for solu-
tions from both the relaxation of the redistribution terms

and relaxation of the corresponding expansion coefficients.
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THEORETICAL BACKGROUND AND DEVELOPMENT

In this section, a mathematical framework is outlined

that allows for the construction of a set of elliptic relax-

ation equations for the polynomial expansion coefficients in

a tensor representation of the redistribution terms in the

Reynolds stress transport equation.

The starting point in developing a elliptic relaxation

fornmlation is the transport equation for the Reynolds
stresses which can be written as

Dvij

Dt
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OUj OUi
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where the turbulent transport term, which included expres-

sions for the triple-moment and the pressure transport, is

modeled using a gradient-diffusion model (C, = 0.15, and rc
is a composite time scale defined in Eq. (9)). An anisotropic

dissipation rate model has been introduced (e.g. Manceau,

2000) into tile redistributive term, ¢ij, SO that el£fij is

given by

where a I = 0.09. Note that this form of the dissipation

rate equation (Durbin 1993, Manceau & Hanjalid, 2000) has

introduced a composite time scale, re, that replaces the ratio

K/s in both the production and destruction of dissipation
terms.

Elliptic Relaxation Methodology: 7- - f Model

The reseated elliptic relaxation equation is driven by

the high-Reynolds number form of the pressure-strain cor-

relation, II, and a contribution from the Reynolds stress

anisotropy, 2¢cbij (away from the wall the dissipation rate

is assumed to be isotropic dij = O)

1
(1-L'_V 2) fo = _(%+2_&D

where

(6)

K
e<= --, (7)

rc

with the relaxation scales defined as

cI£ fij = ¢ij -- 2_ (dij -- bij) (2)

where the Reynolds stress anisotropy bij and the dissipation

rate anisotropy dij are

bij- 7"ij _ij di j _ Eij _ij
2I,," 3 ' 2_ 3 (3)

The wall proximity effect is introduced through an elliptic

relaxation of the redistributive model fij.

Solutions are obtained for the rll and r22 normal

Reynolds stresses, and the rl_. shear stress. The transport

equation for the turbulent kinetic energy is used in lieu of
the third normal stress ra3

D K p l _ + 0 ( _ k 0 K _D---I-= _ C"-_KrC-_xk) + uV2K' (4)

and the associated modeled transport equation for the tur-

bulent dissipation rate, e, is

De _ C[lP-Cs2__t_ 0 (C 7"lkVc oC )Dt bT, (5)

with_rK = 1.0, a_ = 1.3, C___=1.83, C, =0.15and

rK312 114]L = max (8)

,< [r=--, r_=max r,C'_ K (9)
c

where CL = 0.16, CL_,- = 80 and Cry,. = 6 were used for

the present study and were adopted from previous elliptic
relaxation formulations.

In the current formulation, the goal is to implement a

tensor representation for the relaxed redistribution function

fij. As will be further discussed in the next. section, such a
representation would be consistent, with a linear pressure-

strain rate model. Previous implementations of the elliptic

relaxation procedure (Manceau & ttanjalid, 2000) using the

SSG pressure strain rate model (Speziale et al., 1991) uti-
lized the full nonlinear form. The linear form of the SSG

model implemented here is given by

Hh = -(C°ec + C_7))b + KC2S

+I'(Ca (bS + Sb - _{bS}I) - NC4 (bW - Wb)

(10)

•C_I = 1.44 l+al
with C 1 = 1.8, C_ = 3.4, C2 = 0.37, Ca = 1.25, C4 = 0.4.

Since this linear form is used, the length scale constant. CL
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neededto bemodifiedfromthepreviouslyusedvalue.

In thevicinity of the wall,theredistributivetermis
balancedby theviscousdiffusionof theReynoldsstresses
resultingin the boundaryconditionsfor the fij (see Ta-

ble 1). Only the 22- and 12-components of f have determi-
nate solutions to the near-wall balance of the stress trans-

port equations. Manceau et al. (submitted for publication)

have used fll = f33 z --f22/2 as boundary conditions on

the remaining components to ensure that f is traceless.

Table I. RELAXATIONTENSORBOUNDARYCONDITIONS.

Component Wall Centerline
1

fl 1 - _-f22,_, symnletry

--20v2 I(I)
f22 2 4 symmetry

e,_Y(a)
1

fzz - "_f22,,_ symmetry
-20 _-6](1)

f12 02 4
e_JY(1)

by T/_m) (x) (m = 1,..., N), the representation

N
% (x, x')

%(x, x') _ _(x)K(x) - Z _,_(x,x')V,7)(x)
r_----1

(13)

is assumed. A tensor scalar product (denoted by [: ]) be-
tween each basis tensor and the representation given in Eq.

(13) can be formed, and this leads (using matrix notation

tbr convenience) to

[¢* (x):T('d (x)]

where

L ' X= <(,x')

= L d_x'-/.(x, x')%maa(x,x ') (14)

%m = v 1LT(_)(x):T(m)(x)j . (15)

Since the functional dependency of [T('_)(x):T("_)(x)] is

only on x, Eq. (14) can be rewritten as

Representations and Elliptic Relaxation: r -- /3n Model

While the elliptic relaxation formulation has already

been applied within a full differential Reynolds stress model,

a question arises about the role tensor representations can

play within the framework of the elliptic relaxation proce-
dure.

As a first step, consider only the differential elliptic re-

laxation equation for the velocity-pressure gradient contri-

bution to fij. This can beobtained from the integral ex-

pression (e.g. Manceau and Hanjalid, 2000)

. ¢;j(x) _ £% (x) - _x)

where

d_x,[%(x,x')
Le(x)K(x) ] Ga(x, x'),

(11)

%(x,x') = -,,,(x)V 20p (x') 20p ,
- _j(x)V b-g,(x)

+_2a,j _k(x)V_ O_k (x') (12)

and Ga(x,x ¢) is approximated by the free-space Greens

fuuction Ga(x,x') = (47rr) -1 with r = IIx'-xll. The

tensor function(s) _ij (and ¢ij) can be represented by a
polynomial expansion of basis tensors just as the associated

Reynolds stress anisotropy tensor bij. For such a basis given

] f_"l 3 I / *
¢*(x):T(")(x) T,.._ = d x %(x,x )(;a(x,x'), (16)

where the scalar function 7re(x, x') is modeled as

x, (.)7.,(x,x') =Tin( ,x')exp -_- .

If a tensor representation of the form

N

0*(x) = E _3_T('_) (18)
n=l

is assumed for O*(x), then Eq. (16) can be rewritten as

_,n(x) = _ dax'Tm(x''x')exp(-r/Lm)4rrr (19)

This leads directly to the differential formulation

- " _ = L _ (x,x) _._(x) (20)(1 L_nV" )/3re(x) - ,,_7-, =

where ;_(x) are the expansion coefficients from the ten-

sor representation of the quasi-homogeneous form of the
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pressure-strainratecorrelation_*

7vl *m: (21)

In this study, the pressure-strain rate model used in the el-

liptic relaxation of the expansion coefficients differs slightly

from the form used in the full differential form and given in

Eq. (10)

IIh= --(C1 ° + C_-)ecb + KO2S

(22)

A comparison of Eqs. (10)and (22)shows that the (slow)
term proportional to b has been modified so that ec now
affects the entire term.

One of the improvements in the current elliptic re-

laxation formulation is that the scaled velocity pressure-

gradient correlation is O(1) in the log-layer region. This

rescaling negated the adverse influence of the elliptic oper-
ator in the log-layer in the Durbin fornmlation. In order

to insure the same benign effect of the elliptic operator on

the expansion coefficients/3m, it is necessary to introduce a
normalized set of basis tensors.

In previous representations of the Reynolds stress an-

isotropy tensor, the basis tensors used in a three-term ex-

pansion were S, SW - WS, and S 2 - {s2}I/3. In the

log-layer, where the velocity gradient has a y-1 behavior,

this then requires that the corresponding expansion coef-

ficients /31, /32, and /33 to have a y, y2, and y2 behavior,

respectively, in order to insure that 0* behaved as O(1).

Unfortunately, such a behavior would once again introduce

all amplification effect, by the elliptic operator on the ex-

pansion coefficients. This problem can be easily remedied

by introducing a scaled basis set of the form

,_(1) = S*, _(2) = S'W* -W'S*,
1

i:(3/= s*2_ ±{s.2}i,
3

(23)

where S" = S/{S2} U2 and W" = W/{S2} 1/2. This scaled
now makes the behavior of both the expansion coefficients

and basis tensors of O(1) in the log-layer, which then pre-
cludes any adverse effect of the elliptic operator in the re-

laxation equation given in Eq. (20).

These results can be extended to the elliptic relaxation

function fid. In the full differential form, the relaxation

function flj is composed of both the velocity-pressure gra-
dient component as well as a contribution from the Reynolds

stress and dissipation rate anisotropies (see Eq. (2)). The

corresponding elliptic relaxation equation for the expansion

coefficients is then given by

(1-LmV2 2) tim-
1

(24)

where, for the most general formulation, each coefficient can

have an associated length scale

I"?L,n = CL,, max --, CLf,.= 7 (25)

The tim boundary conditions are listed in Table 2 as func-

tions of fij.

Table2. tim BOUNDARYCONDITIONS.

13m Wall Cent erline

-2Ov_ _rl(,) [n=_(,)]_

'& eL ____l) eK

-15 v2/(_) [n:¢')]
/32 egY___l) eK

f13 2 4 eK
e_'Y(t)

DISCUSSION

Solution & Calibration

For the channel flow used in this study the equations

were non-dimensionalized by the bulk viscosity and friction

velocity at the wall (i.e. wall-units). The physical aspect of
the channel flow was defined by the Reynolds number based

on channel half-height, Re_. A one-dimensional finite-

difference code was used for all computations. The differ-

encing template was node-centered with clustering close to
the wall using an exponential stretching function. The 500

node grid had the first point at. a height of 0.1 wall units.

The channel Reynolds number determined the grid height.

The K and c equations were implicitly coupled as were the

rij - fij equations. The variables U, K, c and the vii were

solved in a time-dependent mode and were updated by the

time step At. Time stepping was not used in the solution

of the fij equations.
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Comparison of the Models

Figures 1 to 6 show the predictive performance of both

the rij - fij and rij -f3_ formulations. As the figures show,
the two methods are coincident with the only difference be-

ing in the 22-component of the pressure strain rate correla-

tion. (In this figure the DNS data is the unaltered (re = r)

high Reynolds number results so that in the vicinity of the
wall the data differs significantly from the computed re-

sults.) This difference is due to the slight change in the
defining relation for I]h (cf. Eqs. (10) and (22)) used in

the rij -_, formulation. Even with this slight change, it

is interesting to note that the placement of the composite

dissipation rate only has a localized effect on the pressure-
strain rate component. There were no noticeable differences

in the other computed quantities such as the mean flow,

turbulent kinetic energy or Reynolds stresses due to the po-
sition of this term.
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The consistency between the two formulations across
the channel can be shown analytically• Since, for two-

dimensional flows, a three-term basis set is sufficient to rep-

resent a tensor function that only depends on the tensors S

and W. This implies that the effect of the relaxation term

,sKf should be reproduced by a properly formulated relax-

ation procedure for the expansion coefficients• Consider,

for example, the right hand side of the /31 equation (24)

expanded and expressed in terms of the invariants formed

from b, S and W

+1_'c._{ss'} + 2I;C3{bSS'}
a- *-2IiC4{bWS*} + 2.,{bS }. (26)
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tion fij. An elliptic relaxatig_equation correspond_

fo relaxation equation isflbrnmlated that allows mr the

relaxation of the polynoifiial expansion coefficients. The
me.thod is demonstrated here on a fully developed channel

ttow problem and th_ethods are found to give similar

results. This consistency is further confirmed through an

analysis of tile right hand sides of the corresponding elliptic

relaxation equations. Ths formulation is now being used in

the development of a fully explicit, algebraic Reynolds stress

model that incorporates an elliptic relaxation equation.
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The only non-zero components of S and W yield 6'_2 =

1/v_ = Wa*2. If these values are used in Eq. (26), the re-

suiting expression is proportional to the corresponding be-

havior of the right hand side of Eq. (6) for the f12 compo-
nent (f12 =/31'r(1)),

([IIh:rF (1)] -1-2 £c [b;rr(l)])= v/-2(Hh2+2£cb12)(27 )

Since ]'12 =/31/v/_, Eq. (27) shows that the results from the

fij formulation and the expansion coefficient formulation
are equivalent. Similar results would be obtained for the

other fln-fij sets of equations.

SUMMARY

A methodology has been developed that introduces a

polynomial representation of the tensor redistribution func-
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